Темы: камера фотоаппарат объектив ПЗС-матрица

Сердце цифровой фотокамеры: ПЗС-матрица (часть вторая)

Марин Милчев, info@ferra.ru
Вернуться
Сердце цифровой фотокамеры: ПЗС-матрица (часть вторая)
В предыдущей части было рассказано об одном из главных параметров ПЗС-матрицы – ее размере. На этот раз речь пойдет о том, как свет, попадающий на поверхность матрицы, превращается в «электронный негатив», а также о факторах, влияющих на этот процесс.

После прочтения предыдущей части у нашего читателя могло сложиться впечатление, что ПЗС-матрица – это некий «чёрный ящик», выдающий «электронный негатив» после того, как на его регистрирующую поверхность было спроецировано созданное объективом световое изображение, и что на качество снимка влияет исключительно размер сенсора.

Той же точки зрения придерживаются продавцы цифровой фототехники, мягко, но настойчиво подталкивающие потенциального покупателя к приобретению модели с как можно более крупногабаритной матрицей, даже если объективных причин для такой покупки нет. Ещё чаще в качестве «наживки» для клиента выступают разного рода «уникальные разработки», использованные при создании матрицы, которые, как ни странно, никем из прочих производителей не применяются.

Начинающему фотолюбителю трудно отличить рекламные обещания от действительно эффективных инженерных находок. В настоящей статье будет сделана попытка «отделить зерна от плевел», однако для начала необходимо ознакомиться с базовыми определениями цифровой фотографии.

Как фотон становится электроном

В приборах с зарядовой связью преобразование фотона в электрон производится в результате внутреннего фотоэффекта: поглощения светового кванта кристаллической решёткой полупроводника с выделением носителей заряда. Это может быть либо пара «электрон + дырка», либо единичный носитель заряда – последнее происходит при использовании донорных либо акцепторных примесей в полупроводнике. Очевидно, что образовавшиеся носители заряда до момента считывания необходимо как-то сохранить.

Для этого основной материал ПЗС-матрицы – кремниевая подложка p-типа – оснащается каналами из полупроводника n-типа, над которыми из поликристаллического кремния изготавливаются прозрачные для фотонов электроды. После подачи на такой электрод электрического потенциала в обеднённой зоне под каналом n-типа создаётся потенциальная яма, назначение которой – хранить заряд, «добываемый» посредством внутреннего фотоэффекта. Чем больше фотонов упадёт на ПЗС-элемент (пиксель) и превратится в электроны, тем выше будет заряд, накопленный ямой.

Элемент ПЗС-матрицы
Сечение пикселя ПЗС-матрицы

Чтобы получить «электронный негатив», необходимо считать заряд каждой потенциальной ямы матрицы. Данный заряд получил название фототок, его значение довольно мало и после считывания требует обязательного усиления.

Считывание заряда производится устройством, подключённым к самой крайней строке матрицы, которое называется последовательным регистром сдвига. Данный регистр представляет собой строку из ПЗС-элементов, заряды которой считываются поочерёдно. При считывании заряда используется способность ПЗС-элементов к перемещению зарядов потенциальных ям – собственно, именно поэтому данные устройства называются приборами с зарядовой связью. Для этого используются электроды переноса (transfer gate), расположенные в промежутке между ПСЗ-элементами. На эти электроды подаются потенциалы, «выманивающие» заряд из одной потенциальной ямы и передающие его в другую.

При синхронной подаче потенциала на электроды переноса обеспечивается одновременный перенос всех зарядов строки справа налево (или слева направо) за один рабочий цикл. Оказавшийся «лишним» заряд поступает на выход ПЗС-матрицы. Таким образом, последовательный регистр сдвига преобразовывает заряды, поступающие на его вход в виде параллельных «цепочек», в последовательность электрических импульсов разной величины на выходе. Чтобы подать эти параллельные «цепочки» на вход последовательного регистра, опять-таки используется регистр сдвига, но на этот раз параллельный.

ПЗС-матрица
Сечение пикселя ПЗС-матрицы

Фактически параллельным регистром является сама ПЗС-матрица, создающая посредством совокупности фототоков электронный «слепок» светового изображения. Матрица представляет собой множество последовательных регистров, называемых столбцами и синхронизированных между собой. В результате за рабочий цикл происходит синхронное «сползание» фототоков вниз, а оказавшиеся «лишними» заряды нижней строки матрицы поступают на вход последовательного регистра.

Как следует из вышесказанного, необходимо достаточно большое количество управляющих микросхем, синхронизирующих подачу потенциалов как на параллельный, так и на последовательный регистры сдвига. Очевидно, что последовательный регистр должен полностью освободиться от зарядов в промежутке между тактами параллельного регистра, поэтому требуется микросхема, синхронизирующая между собой оба регистра.

Из чего состоит пиксель

По указанной выше схеме работает так называемая полнокадровая ПЗС-матрица (full-frame CCD-matrix), её режим работы накладывает некоторое ограничение на конструкцию камеры: если в процессе считывания фототоков экспонирование не прекращается, «лишний» заряд, генерируемый попадающими на пиксели фотонами, «размазывается» по кадру. Поэтому необходим механический затвор, перекрывающий поступление света к сенсору на время, необходимое для считывания зарядов всех пикселей. Очевидно, что такая схема считывания фототоков не позволяет формировать видеопоток на выходе с матрицы, поэтому применяется она только в фототехнике.

Впрочем, избыточный заряд может накопиться в потенциальной яме и при фотосъёмке – например, при слишком «длинной» выдержке. «Лишние» электроны стремятся «растечься» по соседним пикселям, что на снимке отображается в виде белых пятен, размер которых связан с величиной переполнения. Данный эффект именуется блюмингом (от английского blooming – «размывание»). Борьба с блюмингом осуществляется посредством электронного дренажа (drain) – отвода из потенциальной ямы избыточного заряда. Существует два основных вида дренажа: вертикальный (Vertical Overflow Drain, VOD) и боковой (Lateral Overflow Drain, LOD).

Боковой дренаж ПЗС-матрицы
Схема бокового дренажа

Для реализации вертикального дренажа на подложку ЭОП подаётся потенциал, который при переполнении глубины потенциальной ямы обеспечивает истечение избыточных электронов сквозь подложку. Основной минус такой схемы – уменьшение глубины потенциальной ямы, в результате чего сужается динамический диапазон. А в матрицах с обратной засветкой (в них фотоны проникают внутрь сенсора не сквозь электрод потенциальной ямы, а со стороны подложки) вертикальный дренаж вообще неприменим.

Боковой дренаж осуществляется при помощи специальных «дренажных канавок», в которые «стекают» избыточные электроны. Для формирования этих канавок прокладываются специальные электроды, на которые подаётся потенциал, формирующий дренажную систему. Другие электроды создают барьер, препятствующий преждевременному «бегству» электронов из потенциальной ямы.

Как следует из описания, при боковом дренаже глубина потенциальной ямы не уменьшается, однако при этом урезается площадь светочувствительной области пикселя. Тем не менее без дренажа обойтись нельзя, так как блюминг искажает снимок больше, чем все остальные виды помех. Поэтому производители вынуждены идти на усложнение конструкции матриц.

Таким образом, «обвязка» любого пикселя состоит как минимум из электродов переноса заряда и из компонентов дренажной системы. Однако большинство ПЗС-матриц отличается более сложной структурой своих элементов.

Оптика для пикселя

ПЗС-матрицы, используемые в видеокамерах и в большинстве любительских цифровых фотоаппаратов, обеспечивают непрерывный поток импульсов на своём выходе, при этом перекрытие оптического тракта не происходит. Чтобы при этом не происходило «смазывание» изображения, используются ПЗС-матрицы с буферизацией столбцов (interline CCD-matrix).

ПЗС-матрица с буферизацией столбцов
Структура матрицы с буферизацией столбцов

В таких сенсорах рядом с каждым столбцом (который представляет собой последовательный регистр сдвига) располагается буферный столбец (тоже последовательный регистр сдвига), состоящий из ПЗС-элементов, покрытых непрозрачными полосками (чаще металлическими). Совокупность буферных столбцов составляет буферный параллельный регистр, причём столбцы данного регистра «перемешаны» с регистрирующими свет столбцами.

За один рабочий цикл светочувствительный параллельный регистр сдвига отдаёт все свои фототоки буферному параллельному регистру посредством «сдвига по горизонтали» зарядов, после чего светочувствительная часть снова готова к экспонированию. Затем идёт построчный «сдвиг по вертикали» зарядов буферного параллельного регистра, нижняя строка которого является входом последовательного регистра сдвига матрицы.

Очевидно, что перенос заряда матрицы в буферный параллельный регистр сдвига занимает малый интервал времени и перекрывать световой поток механическим затвором нет необходимости – ямы не успеют переполниться. С другой стороны, необходимое время экспонирования, как правило, сравнимо со временем считывания всего буферного параллельного регистра. За счёт этого интервал между экспонированием можно довести до минимума – в результате видеосигнал в современных видеокамерах формируется с частотой от 30 кадров в секунду и выше.

В свою очередь, сенсоры с буферизацией столбцов подразделяются на две категории. При считывании за один такт всех строк можно говорить о матрице с прогрессивной развёрткой (progressive scan). Когда за первый такт считываются нечётные строки, а за второй – чётные (или наоборот), речь идёт о матрице с чересстрочной развёрткой (interlace scan). Кстати, за счёт сходства звучания английских терминов «матрица с буферизацией столбцов» (interlined) и «чересстрочная матрица» (interlaced) в отечественной литературе сенсоры с буферизацией строк нередко ошибочно называют чересстрочными.

Как ни странно, «размазывание» заряда (smear) происходит и в матрицах с буферизацией столбцов. Вызвано это частичным перетеканием электронов из потенциальной ямы светочувствительного ПЗС-элемента в потенциальную яму расположенного рядом буферного элемента. Особенно часто это происходит при близких к максимальному уровнях фототока, вызванных очень высокой освещённостью пикселя. В результате на снимке вверх и вниз от этой яркой точки протягивается светлая полоса, которая портит кадр.

Для противодействия этому явлению увеличивают расстояние между светочувствительным и буферным ПЗС-элементами. В результате усложняется обмен зарядом и увеличивается затрачиваемое на это время, однако искажения кадра, вызываемые «размазыванием», всё же слишком заметны, чтобы ими пренебрегать.

Буферизация столбцов позволяет также реализовать электронный затвор, с помощью которого можно отказаться от механического перекрытия светового потока. С помощью электронного затвора можно получить сверхмалые (до 1/10000 секунды) значения выдержки, недостижимые для механического затвора. Эта возможность особенно актуальна при фотографировании спортивных состязаний, природных явлений и т. п.

Для реализации электронного затвора обязательно необходим антиблюминговый дренаж. При очень коротких выдержках, которые по длительности меньше, чем время переноса заряда из потенциальной ямы светочувствительного ПЗС-элемента в потенциальную яму буферного, дренаж играет роль «отсечки». Эта «отсечка» предотвращает попадание в яму буферного ПЗС-элемента электронов, возникших в яме светочувствительного элемента по истечении времени выдержки.

Однако схема с буферизацией столбцов не лишена недостатков. Основной минус заключается в том, что буферные регистры сдвига «съедают» значительную часть площади матрицы, в результате каждому пикселю в качестве светочувствительной области достаётся лишь 30% от его общей поверхности. У пикселя полнокадровой матрицы эта область составляет 70%.

Для компенсации этого минуса производители используют микролинзы, располагающиеся над каждым элементом матрицы и фокусирующие весь достающийся пикселю световой поток на сравнительно малую светочувствительную область.

Эффект использования микролинз
Структура пикселей – с микролинзой и обычного

Степень концентрации светового потока при прохождении сквозь микролинзу зависит от технологического уровня производителя матрицы. Встречаются довольно сложные конструкции, обеспечивающие максимальную эффективность этим миниатюрным устройствам.

Однако при использовании микролинз значительно сокращается вероятность того, что лучи света, падающие под большим углом к нормали, проникнут в светочувствительную область. А при большом отверстии диафрагмы процент таких лучей довольно велик. Таким образом, уменьшается интенсивность воздействия светового потока на матрицу, то есть основной эффект, ради которого открывают диафрагму.

Впрочем, вреда от таких лучей ничуть не меньше, чем пользы. Дело в том, что, проникая в кремний под большим углом, фотон может войти в матрицу на поверхности одного пикселя, а выбить электрон в теле другого. Это приводит к искажению изображения. Поэтому, чтобы ослабить влияние таких «бронебойных» фотонов, поверхность матрицы, за исключением светочувствительных областей, покрывается непрозрачной маской (чаще металлической), что дополнительно усложняет конструкцию матриц.

Кроме того, микролинзы вносят определённые искажения в регистрируемое изображение, размывая края линий, толщина которых на грани разрешения сенсора. Но и данный негативный эффект может оказаться частично полезным. Такие тончайшие линии могут привести к ступенчатости (aliasing) изображения, возникающей от присвоения пикселю определённого цвета вне зависимости от того, закрыт ли он деталью изображения целиком или только его часть. Ступенчатость приводит к появлению в изображении рваных линий с «зазубринами» по краям.

Именно из-за ступенчатости камеры с крупногабаритными полнокадровыми матрицами оснащаются фильтрами защиты от наложения спектров (anti-aliasing filter), и цена этих устройств довольно высока. Ну а матрицам с микролинзами этот фильтр не нужен.

Вследствие различных требований к качеству изображения матрицы с буферизацией столбцов применяются в основном в любительской технике, тогда как полнокадровые сенсоры обосновались в профессиональных и студийных камерах.

Продолжение следует

Настоящая статья даёт описание, если можно так сказать, геометрии пикселя. Более подробно о  процессах, происходящих при регистрации, хранении и считывании заряда, будет рассказано в следующей статье.

вывести на печать