Компьютеры
26 октября 2000, 00:33

Перспективные технологии дисплеев

На электронно-лучевых трубках и жидкокристаллических панелях свет не сошелся клином. Плазменные и другие перспективные дисплеи уже стучатся в дверь.

Плазменные дисплеи
(PDP — plasma display panel)

Коммерческий цикл любого изобретения не вечен, и производители, запустившие массовое производство LCD-мониторов, готовят следующее поколение технологий отображения информации. Устройства, которые придут на смену жидкокристаллическим, находятся на разных стадиях развития. Некоторые, такие, как LEP (Light Emitting Polymer — светоизлучающие полимеры), только выходят из научных лабораторий, а другие, например на основе плазменной технологии, уже представляют собой законченные коммерческие продукты.

Глубина монитора

Размер всегда был главным препятствием при создании широкоэкранных мониторов. Мониторы размером больше 24 дюймов, созданные с использованием ЭЛТ технологии, слишком тяжелые и громоздкие. ЖК-мониторы — плоские и легкие, но экраны, размер которых больше 20 дюймов, обладают слишком высокой себестоимостью. Плазменная технология нового поколения идеально подходит для создания больших экранов. Она позволяет выпускать плоские и легкие мониторы глубиной всего 9 см (см. рис. 1). Поэтому, несмотря на большой экран, они могут быть установлены в любом месте — на стене, под потолком, на столе.

Рисунок 1. Глубина монитора.

Благодаря широкому углу обзора изображение видно с любой точки. И что самое главное, плазменные мониторы способны передать цвет и резкость, которые раньше были недостижимы при таком размере экрана.

Идея использования газового разряда в средствах отображения не нова. Подобные устройства выпускались много лет назад в СССР в Рязани в НПО «Плазма». Однако размер элемента изображения был достаточно велик, так что для получения приличного изображения было нужно создавать огромные табло. Изображение было некачественным, передавалось мало цветов, устройства были крайне ненадежными.

За рубежом исследования и разработки в области этой технологии начались еще в начале 60-х годов. Еще лет пятьдесят назад было открыто одно интересное явление. Как оказалось, если катод заострить на манер швейной иглы, то электромагнитное поле в состоянии самостоятельно «выдергивать» из него свободные электроны. Необходимо только подать напряжение. По такому принципу работают лампы дневного света. Вылетающие электроны ионизируют инертный газ, чем заставляют его светиться. Трудность заключалась лишь в отработке технологии получения таких игольчатых матриц. Ее решили в Университете штата Иллинойс в 1966 году. В начале семидесятых годов компания Owens-Illinois довела проект до коммерческого состояния. В восьмидесятых годах эту идею пытались воплотить в реальный коммерческий продукт компании Burroughs и IBM, но тогда еще безуспешно.

Надо сказать, что идея плазменной панели появилась вовсе не из чисто научного интереса. Ни одна из существовавших технологий не могла справиться с двумя простыми задачами: добиться высококачественной цветопередачи без неизбежной потери яркости и создать телевизор с широким экраном, чтобы он при этом не занимал всю площадь комнаты. А плазменные панели (PDP), тогда только теоретически, подобную задачу как раз могли решить. Первое время опытные плазменные экраны были монохромными (оранжевыми) и могли удовлетворить спрос только специфических потребителей, которым требовалась, прежде всего, большая площадь изображения. Поэтому первую партию PDP (около тысячи штук) купила Нью-йоркская фондовая биржа.

Направление плазменных мониторов возродилось после того, как стало окончательно ясно, что ни ЖК-мониторы, ни ЭЛТ не в состоянии недорого обеспечить получение экранов с большими диагоналями (более двадцати одного дюйма). Поэтому лидирующие производители бытовых телевизоров и компьютерных мониторов, такие, как Hitachi, NEC и другие, вновь вернулись к PDP. В область плазменной технологии также обратили свои взоры и корейские компании «второй мировой линии», среди которых, например, Fujitsu, производящая более дешевую электронику, что тут же внесло остроту конкуренции. Сейчас Fujitsu, Hitachi, Matsushita, Mitsubishi, NEC, Pioneer и другие производят плазменные мониторы с диагональю 40 дюймов и более.

Принцип работы плазменной панели состоит в управляемом холодном разряде разреженного газа (ксенона или неона), находящегося в ионизированном состоянии (холодная плазма). Рабочим элементом (пикселем), формирующим отдельную точку изображения, является группа из трех субпикселей, ответственных за три основных цвета соответственно. Каждый субпиксель представляет собой отдельную микрокамеру, на стенках которой находится флюоресцирующее вещество одного из основных цветов (см. рис. 2). Пиксели находятся в точках пересечения прозрачных управляющих хром-медь-хромовых электродов, образующих прямоугольную сетку.

Конструкция ячейки

Рисунок 2. Конструкция ячейки.

Для того, чтобы «зажечь» пиксель, происходит приблизительно следующее. На питающий и управляющий электроды, ортогональные друг другу, в точке пересечения которых находится нужный пиксель, подается высокое управляющее переменное напряжение прямоугольной формы. Газ в ячейке отдает большую часть своих валентных электронов и переходит в состояние плазмы. Ионы и электроны попеременно собираются у электродов, по разные стороны камеры, в зависимости от фазы управляющего напряжения. Для «поджига» на сканирующий электрод подается импульс, одноименные потенциалы складываются, и вектор электростатического поля удваивает свою величину. Происходит разряд — часть заряженных ионов отдает энергию в виде излучения квантов света в ультрафиолетовом диапазоне (в зависимости от газа). В свою очередь, флюоресцирующее покрытие, находясь в зоне разряда, начинает излучать свет в видимом диапазоне, который и воспринимает наблюдатель. 97% ультрафиолетовой составляющей излучения, вредного для глаз, поглощается наружным стеклом. Яркость свечения люминофора определяется величиной управляющего напряжения.

 

Взаимодействия в PDP-ячейке

Рисунок 3. Взаимодействия в ячейке.

Высокая яркость (до 650 кд/м2) и контрастность (до 3000:1) наряду с отсутствием дрожания являются большими преимуществами таких мониторов (Для сравнения: у професионального ЭЛТ-монитора яркость равна приблизительно 350 кд/м2, а у телевизора — от 200 до 270 кд/м2 при контрастности от 150:1 до 200:1). Высокая четкость изображения сохраняется на всей рабочей поверхности экрана. Кроме того, угол по отношению к нормали, под которым увидеть нормальное изображение на плазменных мониторах, существенно больше, чем у LCD-мониторов. К тому же плазменные панели не создают магнитных полей (что служит гарантией их безвредности для здоровья), не страдают от вибрации, как ЭЛТ-мониторы, а их небольшое время регенерации позволяет использовать их для отображения видео- и телесигнала. Отсутствие искажений и проблем сведения электронных лучей и их фокусировки присуще всем плоскопанельным дисплеям. Необходимо отметить и стойкость PDP-мониторов к электромагнитным полям, что позволяет использовать их в промышленных условиях — даже мощный магнит, помещенный рядом с таким дисплеем, никак не повлияет на качество изображения. В домашних же условиях на монитор можно поставить любые колонки, не опасаясь возникновения цветных пятен на экране.

Главными недостатками такого типа мониторов является довольно высокая потребляемая мощность, возрастающая при увеличении диагонали монитора и низкая разрешающая способность, обусловленная большим размером элемента изображения. Кроме этого, свойства люминофорных элементов быстро ухудшаются, и экран становится менее ярким. Поэтому срок службы плазменных мониторов ограничен 10000 часами (это около 5 лет при офисном использовании). Из-за этих ограничений, такие мониторы используются пока только для конференций, презентаций, информационных щитов, то есть там, где требуются большие размеры экранов для отображения информации. Однако есть все основания предполагать, что в скором времени существующие технологические ограничения будут преодолены, а при снижении стоимости, такой тип устройств может с успехом применяться в качестве телевизионных экранов или мониторов для компьютеров.

Тип дисплея прямого свеченияПринцип работы дисплеяОсновные достоинства и недостаткиОсобенности и перспективы развития
Кинескопные (CRT — Catod Ray Tube)Термоэмиссия электронов, ускоряющихся электростатическим полем. Отклонение электронного пучка (развертка растра) магнитным полем катушек ОС. Излучение света люминофоров основных цветов за счет энергии ускоренных электронов.1. Воспроизводят полный цветовой треугольник (локус) человеческого зрения.2. Прекрасное разрешение и высокая контрастность.3. Большие масса и габариты.1. Разработка кинескопов повышенного разрешения со сверх плоским экраном.2.Ведутся работы по повышению экономичности новых кинескопов.
Плазменные панели PDP (Plasma Display Panel)Свечение люминофоров основных цветов в результате воздействия УФ-излучения, возникающего при электрическом разряде в плазме. Плазма образуется при электрическом разряде постоянного (DC) или переменного (AC) тока в разряженном газе между двумя стеклянными пластинами дисплея.1. Большая яркость, полный цветовой треугольник (локус).2. Легкость создания больших плоских панелей с диагональю 40 дюймов и более.3.Широкий угол обзора (более 160 градусов).Сегодняшние достижения плазменных панелей с диагональю 40 дюймов и более:яркость свечения экрана 350 кд/м2, контраст 300:1,разрешение 640х480 пикселей и более, экономичность порядка 10 Вт/люмен.
Плазма — адресуемые панели PALC (Plasma Adressing Liquid Crystal Display Device)Комбинированная конструкция — для управления (коммутации) активной ЖК-матрицы (LCD). В качестве ключа используется проводящий канал в разряженном газе (плазме).1. Большая яркость, полный цветовой треугольник (локус).2. Легкость создания больших плоских панелей с диагональю 40 дюймов и более.3. Экономичночть.4. Возможность создания панелей высокого разрешения.5. Малый угол обзора (в последних моделях значительно расширен).Достижения панелей PALC:  экономичность 1,2 мВт/люмен, серийно изготавливаются панели с диагональю 40-60 дюймов.

Сравнительная характеристика дисплеев прямого свечения.

 

Неплохие перспективы PDP связывают с относительно низкими требованиями к производственным условиям; в отличие от TFT-матриц PDP-экраны можно изготовлять в условиях низких температур методом прямой печати.

Практически каждый производитель плазменных панелей добавляет к классической технологии некоторые собственные ноу-хау, улучшающие цветопередачу, контрастность и управляемость. В частности, NEC предлагает технологию капсулированного цветового фильтра (CCF), отсекающего ненужные цвета, и методику повышения контрастности за счет отделения пикселей друг от друга черными полосами (такая же технология используется Pioneer). В мониторах Pioneer также используются технология Enhanced Cell Structure, суть которой в увеличении площади люминофорного пятна, и новая химическая формула голубого люминофора, который дает более яркое свечение, и, соответственно, повышает контрастность. Компания Samsung разработала конструкцию монитора повышенной управляемости — панель разделена на 44 участка, каждый из которых имеет собственный электронный блок управления.

Компании Sony, Sharp и Philips совместно разрабатывают технологию PALC (Plasma Addressed Liquid Crystal), которая должна соединить в себе преимущества плазменных и LCD экранов с активной матрицей. Дисплеи, созданные на основе данной технологии, сочетают в себе преимущества жидких кристаллов (яркость и сочность цветов, контрастность) с большим углом видимости и высокой скоростью обновления плазменных панелей. В качестве регулятора яркости в этих дисплеях используются газоразрядные плазменные ячейки, а для цветовой фильтрации применяется ЖК-матрица. Технология PALC позволяет адресовать каждый пиксель дисплея по отдельности, а это означает непревзойденную управляемость и качество изображения. Первые образцы на основе технологии PALC появились в 1998 году.

Можно привести несколько удачных примеров использования плазменных мониторов. В торговом центре в Осло установлено 70 дисплеев, на которых покупают рекламное время небольшие магазинчики. Там PDP-мониторы окупили себя за 2,5 месяца. Используют их и в аэропортах. В частности, в Вашингтоне они установлены в зале прилета. Благодаря своей динамичности такой способ подачи информации привлекает гораздо больше внимания, чем традиционные табло. Есть опыт применения плазменных мониторов и в ресторанах McDonalds. Различные телевизионные компании, например CBS, NBC, BBS, MTV и российская НТВ используют в оформлении своих студий PDP-мониторы. Это связано с тем, что высокая частота обновления позволяет вести съемку PDP-дисплея обычной камерой, и при этом не возникает мерцания или стробоскопического эффекта.

Итак, несмотря на довольно высокую цену, плазменные мониторы уже сейчас находят применение во многих отраслях — вложенные в них деньги быстро окупаются. Рост объемов продаж плазменных дисплеев и постоянное совершенствование конструкции позволяет предположить, что в перспективе цены на них упадут до уровня ЭЛТ-мониторов. По словам представителей Fujitsu, у этой компании есть четкая цель — довести стоимость плазменной панели до $100 за один дюйм диагонали. «Таким образом, 42-дюймовая панель будет стоить $4200, что уже весьма близко к стоимости ЭЛТ-моделей аналогичного размера», — говорят они. Когда точно это случится, предсказать пока трудно, но, по оценкам специалистов, в качестве крайнего срока можно рассматривать 2005 год.

Field Emission Display (FED)
дисплеи с электростатической (автоэлектронной) эмиссией

Технологии, которые применяются при создании мониторов, могут быть разделены на две группы: 1) мониторы, основанные на излучении света — традиционные ЭЛТ-мониторы и плазменные дисплеи, то есть устройства, элементы экрана которых излучают свет во внешний мир; 2) мониторы трансляционного типа — LCD мониторы. Одним из лучших технологических направлений в области создания мониторов, которая совмещает в себе особенности обоих технологий, описанных выше, является технология FED (Field Emission Display). Этот тип мониторов начал осваиваться в США и Европе в ответ на прорыв Японии в области ЖК-мониторов.

Мониторы FED основаны на процессе, который немного похож на тот, что применяется в ЭЛТ-мониторах, так как в обоих методах применяется люминофор, светящийся под воздействием электронного луча. Также их называют плоскими ЭЛТ. Главное отличие между ЭЛТ и FED мониторами состоит в том, что ЭЛТ-мониторы имеют три пушки, которые испускают три электронных луча, последовательно сканирующих экран, покрытый люминофорным слоем, а в FED-мониторе каждый пиксель изображения формируется излучением электронов с нескольких тысяч субмикрометровых остроконечных элементов поверхности. Благодаря этому не требуется высоковольтная эмиссия, и рабочее напряжение устройства может быть существенно снижено. Оно во многом зависит от материала эмитирующей поверхности. Например, если электроны генерируются молибденом, то на управляющие электроды достаточно подать 12 В. Но, несмотря на привлекательность низковольтной конструкции, оказалось, что для эффективного облучения люминофора все же требуется разогнать электроны в высоковольтном поле. Другая проблема FED-дисплеев — поддержание вакуума в экранах большого размера. Конструкция должна быть достаточно прочной, чтобы противостоять сжимающему атмосферному давлению.

FED мониторы обеспечивают высокую яркость изображения (600–800 кд/м2) и угол обзора 160° во всех направлениях, а также имеют очень короткое время отклика, легки, тонки, потребляют мало электроэнергии, могут работать в широком температурном диапазоне. Но, к сожалению, еще не решена главная проблема FED-дисплеев — невысокий срок работы.

Типичные характеристики уже действующих FED'ов: размер по диагонали 10–27 см, толщина порядка нескольких миллиметров, допустимый интервал рабочей температуры от –5 до +85°С. По прогнозам, к концу 2001 года в мире будет производиться около миллиона 14,1-дюймовых FED-дисплеев (в год).

В Красноярском государственном техническом университете (КГТУ) также разработана технология производства FED-дисплеев. Производство экранов планируется проводить совместно с ОАО «Искра». Бизнес-план по «Организации производства полевых эмиссионных дисплеев» представлен в администрацию Красноярского края, прошел два этапа экспертизы и в настоящее время выставлен на постоянно действующей Российской выставке инвестиционных проектов.

Light Emission Plastics (LEP)

Начало LEP-технологии было положено в 1989 году, когда профессор Ричард Френд вместе с группой химиков научной лаборатории Кембриджского университета открыл светоизлучающие полимеры (Light Emitting Plastics). Вскоре выяснилось, что открытые вещества обладают рядом свойств, которые позволяют разработать на их основе семейство дисплеев нового поколения. Для изучения LEP и создания новых дисплеев была образована компания CDT (Cambridge Display Technologies). Вскоре CDT нашла инвесторов, и в 1992 году началась разработка первого монитора, сделанного на основе LEP-технологии.

Светоизлучающие полимеры — это одна из разновидностей так называемых сопряженных полимеров, электропроводность разных представителей которых лежит в весьма широком диапазоне, и они, будучи расположенными между электродами, излучают свет. Эти полимеры (полифениленвинилен (PPV) и циано-PPV (CN-PPV)) являются полупроводниками, кроме того, еще и самоизолируемыми.

хим. строение PPV и CN-PPV

Рисунок 4. Химическое строение PPV и CN-PPV.

технология LEP

Рисунок 5. Конструкция LEP-дисплея.

первый LEP-монитор

Достаточно логично, что первым коммерческим применением проводящего пластика стали проводники. На данный момент такие пластики по проводимости приближаются к меди и имеют срок службы порядка 10 лет. Они применяются (в частности, компанией Matsushita) для изготовления электродов в батареях, проводящего покрытия электростатических динамиков, антистатических покрытий, и, что особенно важно, для нанесения проводящих дорожек на печатных платах. Однако, как оказалось, наиболее интересной и экономически перспективной областью применения светоизлучающих пластиков стало создание различных устройств воспроизведения визуальной информации, то есть дисплеев.

Рисунок 6. Конструкция LEP-дисплея.  

Так тесное сотрудничество компании CDT с японской корпорацией Seiko Epson привело в конечном итоге к созданию первого в мире пластикового монитора (официально об этом было объявлено 16 февраля 1998 года). Представленный дисплей был монохромным (черно-желтым), имел разрешение 800x236 точек и площадь около 50 мм2 при толщине всего в 2 мм. Каждым пикселем этого дисплея управлял отдельный тонкопленочный транзистор (TFT), а светоизлучающий полимер наносился на коммутирующую матрицу в жидком виде по технологии, аналогичной стандартной струйной печати.

Существует ряд причин, как чисто техничесих, так и коммерческих, которые делают LEP одним из главных кандидатов на роль основополагающей технологии мониторов следующего поколения. В первую очередь, это относительная простота применения тонкопленочных технологий на основе стандартных литографических процессов при низких затратах и высокой надежности производства. Немаловажной деталью является тот факт, что LEP-мониторы работают при напряжении питания всего около 5 В и имеют очень малый вес. Это позволяет использовать их в малогабаритных преносных устройствах (мобильные телефоны, дисплеи ноутбуков, калькуляторы, видеокамеры, цифровые фотоаппараты), которые питаются от аккумуляторов и батарей. Кроме того, устройство монитора достаточно простое — слои полимера наносят прямо на TFT-матрицу и на прозрачную подложку. Незначительное влияние соседних электронов, обусловленное хорошими изоляционными свойствами полимера, позволяет формировать изображение из самых малых элементов. Таким образом, можно получить практически любое разрешение и придать отдельному пикселю, а также экрану в целом произвольную форму. И, наконец, еще одно немаловажное преимущество LEP-мониторов — они очень тонкие. Это позволяет наносить различные поляризационные покрытия, обеспечивающие высокую контрастность изображения. Кроме того, в отличие от ЖК-дисплеев, угол обзора новых устройств может достигать 180° за счет того, что пластик излучает сам и не требует подсветки. Одной из главных проблем LEP-технологии является низкая эффективность излучения света (т.е. отношение его интенсивности к плотности проходящего тока). Изначально это соотношение составляло 0,01%, однако компания CDT смогла поднять этот показатель до 5% при излучении желтого света, что сравнимо с эффективностью современных неорганических светодиодов (LED). Существенным недостатком был и достаточно узкий диапазон цветов, в котором излучали пластики. Его границы удалось расширить, и в настоящее время он простирается от синего до ближнего инфракрасного (при этом его эффективность составляет около 1%). Полимерный экран нуждается в герметизации, чтобы избежать расслоения под действием водяных паров. Еще одна проблема заключалась в крайне низком сроке службы LEP-мониторов из-за обесцвечивания пластика под действием УФ-лучей, однако за счет использования многослойной структуры и других технических ухищрений его продлили до 5 лет (именно такая продолжительность эксплуатации дисплеев является сегодня характерной для ЭЛТ-мониторов). При различных температурных режимах срок службы LEP-мониторов составляе более 7000 часов при 20° С и около 1100 часов при 80° С без ухудшения характеристик для устройств, произведенных и эксплуатирующихся в нормальных атмосферных условиях, а срок хранения устройств при воздействии яркого света и повышенной температуры без потери работоспособности — более 18 месяцев. При этом компания продолжает работы в этом направлении, стремясь довести срок жизни LEP-устройств хотя бы до 20000 часов, что, по мнению инженеров компании, достаточно для большинства применений.

К настоящему моменту CDT уже разработала полноцветный полимерный дисплей. Несмотря на то, что компании еще есть над чем поработать, можно утверждать, что по прошествии некоторого времени LEP-дисплеи составят достойную конкуренцию по качеству и цене как ЖК, так и ЭЛТ-мониторам. В настоящее время с CDT сотрудничают такие компании, как Seiko Epson, Intel, HP и др. В конце февраля 2000 года CDT объявила о завершении строительства предприятия по производству LEP-материалов. Объем инвестиций в этот проект оценивается в $3 млн. Ввод в строй нового предприятия не только позволит увеличить объем выпуска LEP-полимеров для исследовательских нужд самой компании, но и даст возможность осуществлять поставки компаниям-партнерам CDT.

И совсем недавно (летом 2000 года) компания CDT объявила о завершении разработки дисплея, который в буквальном смысле можно будет распечатать на струйном принтере. Но гибкое покрытие напыляют светоизлучающие полимеры, после чего к подложке достаточно подвести токопроводящие подложки, чтобы получить цветное изображение. Cтоимость такого монитора составляет 60% от цены сопоставимого по размерам ЖК-монитора.

Электролюминесцентные мониторы
(electroluminescent displays)

ЭЛ-мониторы похожи на ЖК, но имеют специальные доработки, обеспечивающие светоизлучение при туннельных переходах. Эти мониторы имеют высокие частоты развертки, хорошую надежность и яркость. Они работают в широком спектре температур (от –40 до +85° C). Однако для ЭЛ-мониторов необходимо высокое напряжение (>80 Вт), цвета у них не такие чистые, как у ЖК-моделей, и изображение на ярком свете тускнеет. Среднее время наработки до отказа (MBTF) составляет 100000 часов. Время отклика меньше 1 мс. Угол обзора более 160°.

Конструкция EL-дисплея

Рисунок 7. Конструкция EL-дисплея.

EL-дисплей

Рисунок 8. EL-дисплей.

Время отклика

Рисунок 9. Время отклика.

Угол обзора

Рисунок 10. Угол обзора.

Температурный диапазон

Рисунок 11. Температурный диапазон.

   Вакуумные флуоресцентные мониторы
(vacuum fluorescent displays)

Эти мониторы могут работать при более низкой мощности, чем плазменные и электролюминесцентные мониторы. Эта технология использует высокоэффективное фосфорное покрытие, нанесенное непосредственно на каждый прозрачный анод в области экрана. Однако эти модели имеют относительно низкое разрешение, так как размер матрицы ограничивается шириной точек фосфора. Поэтому ее используют в низкоинформационных приложениях. Эта технология широко о себе заявила в такой области, как экраны объявлений, так как на таких мониторах изображение хорошо видно на ярком свету.

3798

Рисунок 12. VFDisplay.

  Электронная бумага

Компания E Ink (Кембридж, штат Масачусетс) и Bell Labs, исследовательское подразделение Lucent Techologies, основываясь на результатах исследований процесса электрофореза, выполненных в лаборатории MIT Media Lab, получили вещество, похожее на краску и способное изменять цвет под воздействием электрического поля.

Принцип работы «электронных чернил» пояснен рисунками:

Технология E Ink 1

Электронные чернила — цветная жидкость, состоящая из миллионов крошечных сфер, называемых микрокапсулами. Каждая микрокапсула имеет прозрачную оболочку, наполнитель синего цвета и микроскопические частицы белого пигмента.

Технология E Ink 2

 Все частицы белого пигмента заряжены положительно.

Технология E Ink 3

Поместив микрокапсулу между двух электродов, мы сможем управлять движением частиц белого пигмента.

Подав разность потенциалов (напряжение) на электроды, можно увеличивать или уменьшать концентрацию пигмента вблизи данного электрода в зависимости от полярности поданного напряжения.

Технология E Ink 4

Микрокапсулы этого вещества впечатываются в поверхности ткани, бумаги, пластика или даже металла, выполняющих роль своеобразного дисплея. Краситель изменяет оттенок в зависимости от характеристик электрического поля, создаваемого пластиковыми транзисторами. Пока удалось добиться разрешения 600 точек на дюйм, а картинка выглядит как качественная распечатка струйного принтера. Скорость обновления изображения в опытных образцах достигает десяти кадров в секунду.

Изображение на электронной бумаге, подключенной к компьютеру, можно мгновенно обновить, выведя на нее свежий номер газеты или новое издание книги. Ту же технологию можно использовать также для создания сверхтонких и сверхлегких дисплеев для потребительских электронных устройств следующего поколения, в том числе, сотовых телефонов и персональных цифровых помощников.

Одно из технических преимуществ электронной бумаги состоит в том, что «чернила» являются бистабильными, то есть полученный элементом заряд сохраняется без подпитки, а значит, обеспечивается немалая экономия электроэнергии. Кроме того, электронная бумага имеет преимущества перед ЖК-дисплеями вследствие своей гибкости и долговечности.

Электронную бумагу можно сворачивать (но не складывать), ее нельзя сломать, уронив.

Bell Labs потратила немало времени на создание полупроводящих пластмасс и разработку методов их производства. Два года назад представители лаборатории продемонстрировали напоминающую шелкографию методику нанесения микроскопических элементов пластиковых транзисторов на прозрачную синтетическую пленку.

«Мы разработали пластиковые транзисторы достаточно давно и, поискав им подходящее применение, остановились на электронной бумаге. Учитывая уровень производительности пластиковых транзисторов, нам показалось естественным объединить эти технологии», — говорит Пьер Вильтциус, исследователь из Bell Labs.

Новый способ позволяет печатать транзисторы практически на любой поверхности: кривой, шершавой, гибкой. Первые образцы пластиковых схем выполнены по технологии 75 микрон, то есть в 300 раз более крупной, чем в современных процессорах. Такой технология изготовления микросхем была лет 10 назад. Однако новый способ печати транзисторов с помощью силиконовой резины позволяет добиться такой же плотности транзисторов, как в современном процессоре Pentium III.

Благодаря этой технологии, уже сейчас можно изготавливать гибкие экраны, смарт-карты, простые и надежные компьютеры. Lucent разработала еще один способ изготовления транзисторов  напыление, которое, как утверждает фирма, еще дешевле, чем даже способ печати.

По словам Пола Дрзаика, директора подразделения E Ink по технологиям дисплеев, сотрудничество между E Ink и Lucent позволяет компаниям проверить возможность работы двух технологий друг с другом. Если все пройдет удачно, прототип будет готов не позже чем через год. Уже реализована возможность формирования монохромных изображений, на очереди — овладение цветом.

Вариант технологии электронных чернил E Ink, основанный на обычной кремниевой микроэлектронике, используется в уже выпускаемых компанией электронных табло Immedia. Их тестирование ведется в нескольких крупных розничных магазинах.

Многообещающего успеха достигли ученые из компании NEC, работающие в исследовательском центре Цукуба (Tsukuba). Они нашли метод получения углеродных нанотрубочных гетерогенных структур, которые пригодны для построения электронных наночипов. А в австралийском центре CSIRO Molecular Science на основе углеродных нанотрубок разрабатываются ультратонкие дисплейные панели, более экономичные и обладающие лучшим разрешением, нежели жидкокристаллические. Партнером австралийских ученых выступает австрийская компания Electrovac. Инженеры этой фирмы в начале 70-х годов одними из первых сконструировали жидкокристаллические индикаторы, а теперь Electrovac рассчитывает оказаться у истоков новой перспективной технологии.

Arrows-left
Arrows-right
Reload
1 / 3

Gyricon

Загрузка...
Самое читаемое
Загрузка...