АЧХ акустических систем. Описание методов вычисления и интерпретации

Андрей Волов, 

Акустическая система любого типа характеризуется такими показателями, как чувствительность, диапазон воспроизводимых частот и неравномерность амплитудно-частотной характеристики (АЧХ) в этом диапазоне. На что обращать внимание в первую очередь?

Согласно «законсервированному» ГОСТу (16122-78), акустическая система любого типа характеризуется такими показателями, как чувствительность, диапазон воспроизводимых частот и неравномерность амплитудно-частотной характеристики (АЧХ) в этом диапазоне. На что обращать внимание в первую очередь? И все ли можно поверить алгеброй?

Чувствительность измеряется при подведении к акустической системе синусоидального напряжения амплитудой 1 В некой частоты, при этом микрофон располагается на расстоянии 1 м. Тогда, измеряя развиваемое звуковое давление последовательно, шаг за шагом во всем слышимом диапазоне частот (по умолчанию 20–20000 Гц), получим АЧХ по чувствительности.

Диапазон воспроизводимых частот определяется на основе полученной АЧХ. Например, если в области низких частот глобальный спад начинается на 100 Гц, достигая на 60 Гц, скажем, –40 дБ, то нижняя граница рабочего диапазона находится исходя из некого спада, задаваемого правилами, принятыми в той или иной стране. Таким образом, в нашем примере нижняя граница злополучного диапазона может быть 80 Гц, а может 70 Гц, тут уж как правила потребуют.

Неравномерность АЧХ вычисляется подобно среднеквадратичному отклонению в математической статистике, то есть сначала оценивают среднее значение амплитуды в пределах частотного диапазона, а потом прикидывают болтанку кривой АЧХ вокруг полученного среднего. Чем больше неравномерность, тем хуже. В идеале АЧХ представляет собой прямую линию без наклона, однако в реальном мире ничего идеального не существует.

Использование АЧХ, измеренной по чувствительности, удобно для оценки неравномерности, но совершенно неприемлемо при сравнении акустических систем, имеющих разное электрическое сопротивление, которое, в свою очередь, зависит от частоты. Как следствие разного сопротивления, акустические системы потребляют разную мощность при подведении равного напряжения (соотношение между мощностью, сопротивлением, силой тока и напряжением можно найти в учебнике физики). Другими словами, среднее значение амплиутды «по чувствительности» для таких акустических систем будет, мягко говоря, «кто в лес, кто по дрова». Поэтому Международная электротехническая комиссия (МЭК) при измерении АЧХ требует подводить не напряжение, а электрическую мощность, равную 1 Вт. Излучать же акустическая система будет иную (звуковую) мощность, грубо говоря, в соответствии с «персональным» КПД на разных частотах.

Замечу, что понятие «заморской» чувствительности несколько отличается от доставшегося нам со времен СССР. Чувствительность «по-ихнему» измеряется в децибелах (дБ), а «наша» — в паскалях (Н/м2). Нетрудно пересчитать из нашей относительно стандартного нулевого уровня звукового давления (210–5 Па).

Отдельного упоминания требует оптимальность разрешения по частоте, или, упрощенно говоря, шага между измеренными точками АЧХ. Пыльные от времени узкоспециализированные измерители стандартно-гостированной АЧХ выполнены на аналоговой базе и проходят частотный диапазон со скоростью, увеличивающейся по мере роста частоты. Таким образом, получают зависимость от частоты, близкую к логарифмической. У «аналоговых» АЧХ разрешение на низких частотах хорошее, на высоких — плохое (там скорость пробегания слишком высока, чтобы регистратор успевал дотошно фиксировать амплитуду сигнала с микрофона). Скоростной график определяется утвержденными правилами, ну и динамическими возможностями аналоговой аппаратуры, конечно. Продвинутые АЧХ сегодня вычисляются посредством специальных звуковых анализаторов, в которых уживаются как высокоточная цифра, так и малошумный аналог. Высококачественные звуковые анализаторы, удовлетворяющие всем международным требованиям проведения измерений, умопомрачительно дороги. Далеко не всякая российская фирма может себе позволить измерительный анализатор, выложив за него столько же, сколько за новехонькую иномарку. Для полноты картины упомяну цену измерительного микрофона с предусилителем (в комплект анализатора не входят): в две тысячи вечнозеленых еще уложиться надо. Зато хитроумная методология измерения позволяет в большинстве случаев обойтись без акустически заглушенной камеры, поскольку стоимость последней для измерения АЧХ акустических систем просто разорительна. Разрешение по частоте у таких анализаторов превосходит требуемое по действующим на сей момент правилам, впрочем, предусмотрена возможность варьирования, так сказать, в исследовательских целях. Кстати, частота изменяется линейно (!), что дает массу преимуществ, а затем анализатор пересчитывает накопленный массив в логарифмическую шкалу для отображения на стандартизованном графике.

При программной симуляции получения АЧХ на компьютере (с помощью звуковой карты) сигнал задающего генератора заменяется смоделированным в цифре сигналом. Как правило, используют скользящий тон (sweep tone), плавно пробегающий все звуковые частоты. В смоделированном сигнале частота звука возрастает практически идентично классическому измерителю АЧХ. Данный цифровой сигнал проигрывается в реальном времени (без пауз), а ЦАП аудиокарты выдает аналоговый сигнал, который поступает (через усилитель) на колонки; далее звук, излучаемый колонками, регистрируется через микрофон с предусилителем и записывается посредством АЦП той же звуковой карты. Ясно, что карта должна быть реально полнодуплексной, чтобы одновременно (на самом деле, с задержкой) озвучивать и записывать. Каждый преобразователь, усилитель и микрофон (а равно и помещение как акустический резонатор) имеет свою АЧХ, поэтому для получения корректной характеристики собственно колонок должны быть идеальными либо АЧХ всех преобразователей, либо все отклонения нужно учитывать. Записываемый в цифре сигнал тут же обрабатывается программой, которая может выдавать изменение во времени либо пиковой магнитуды, либо среднеквадратичной мощности записанного сигнала. А поскольку заранее известно, как изменяется частота в этом сигнале, то АЧХ вроде бы уже в кармане. Однако чтобы корректно определить и пиковую магнитуду, и среднеквадратичную мощность, надо задать интервал времени, в течение которого эти штуковины будут вычисляться. Задашь малый интервал — получишь АЧХ, близкую к реальной, но искаженную всякими нехорошими неровностями. Задашь большой интервал — получишь АЧХ, и близко не имеющую ничего общего с реальной, зато гладенькую, легко интерпретируемую даже чайником. Причем в случае фиксированного интервала наибольшая погрешность от причесывания-выравнивания будет выплывать по мере логарифмического роста частоты. Ясно, что для улучшения разрешения по частоте придется удлинять моделируемый сигнал, а это приведет к нарушению «гостированных» правил измерения АЧХ.

Есть еще одна тонкость. Любое физическое устройство обладает задержкой отклика во времени. В частности, диффузор динамика колонки не может мгновенно реагировать на возмущения. Чем больше масса диффузора и жестче его подвес, тем реакция потенциально хуже. Посмотрите «под лупой» на отклик микрофона во времени, например, на ударное воздействие, и вы увидите весьма непростой переходной процесс. Несмотря на отмеченные проблемы, программная симуляция позволяет вычислять АЧХ довольно близко к стандарту, но сейчас речь об ином. Похоже, стандартик-то устарел! Конечно, можно продолжать все лучше программно имитировать доисторические аппаратные измерители АЧХ, однако давайте зрить в корень. Увеличивая разрешение по частоте, получаешь четкое объяснение тому, над чем десятки лет ломали копья многочисленные интерпретаторы АЧХ.

Самое сложное и коварное кроется вот в чем. Как известно, невозможно в принципе точно определить частоту и время одновременно (так называемая неопределенность Гейзенберга). То есть, чтобы определить значение частоты, необходимо наблюдать сигнал в течение достаточного промежутка времени. Чем больше этот промежуток, тем точнее можно определить частоту, и наоборот. А так как в тестовом sweep-сигнале частота постоянно меняется, то погрешность будет тем меньше, чем медленнее нарастает частота. График изменения значения частоты известен точно, поскольку заложен в программную процедуру генерирования тестового сигнала или звукового файла. Последнее дезориентирует. Частоты в регистрируемом микрофоном сигнале поплывут относительно смоделированного и озвученного сигнала из-за многочисленных промежуточных преобразований. Так что опять приходим к необходимости замедления изменения частоты в sweep-сигнале.

Вместо тестового сигнала скользящего тона частенько используют белый шум. И для динамиков безопаснее, и с точки зрения обработки проще. Но… Тут опять есть свои «но». Для разложения зарегистрированного сигнала в спектр применяется процедура быстрого преобразования Фурье (FFT). Чтобы минимизировать погрешности случайной природы, приходится проводить усреднение результатов FFT, получаемых в разные моменты времени. Чем больше спектров усредняется, тем меньше погрешность вычисления АЧХ. Чтобы улучшить разрешение по частоте, увеличивают длину временного окна для FFT, то есть увеличивают объем выборки. В стремлении получить высокое разрешение на низких частотах объем выборки задирают за 65536. Однако на низких частотах динамики озвучивают составляющие белого шума с заниженной акустической мощностью. А это приводит к неправдоподобным завалам на низах у такой АЧХ.

Наконец, АЧХ можно получить, генерируя дельта-импульс и вычисляя модуль комплексного FFT от регистрируемой передаточной функции. Тут придется подбирать интервал повторения импульса, чтобы усреднением спектров минимизировать погрешности. По ряду причин этот метод больше подходит для АЦП, нежели для акустических систем.

Нетрудно догадаться, что три перечисленные выше характеристики представляют собой стационарные оценки, то есть не учитывают динамику акустической системы. «Вот где собака порылась!» Эксперты (как талантливые самоучки, так и заносчивые снобы, вылупившиеся из богатеньких меломанов) сплошь и рядом пытаются однозначно интерпретировать зигзаги АЧХ, подглядывая в чужие шпаргалки и руководствуясь собственными слуховыми ощущениями. Интерпретация — занятие неблагодарное, поскольку АЧХ двух акустических систем могут походить друг на друга как близнецы-братья, а звучать эти системы будут по-разному. И не факт, что одинаково звучащие колонки во всех случаях будут иметь АЧХ как две капли воды. Увы, строгой однозначности здесь нет. Тогда получается, измеряемые АЧХ никому не нужны и ничегошеньки не говорят? Нет, это не так. Просто следует помнить, что стандартная АЧХ — всего лишь условное упрощенное отражение реальности (в своем роде срез грубого слепка), хотя и выполненное строго по неким правилам, замечу, тоже условным. Иногда близость полученной АЧХ к АЧХ истинной очень хорошая, а иногда, увы, очень плохая. Зарубим себе на носу: хотя АЧХ и есть результат объективных оценок-измерений, но ее трактовка — дело субъективное. Типа «закон, что дышло. Куда повернул, туда и вышло». Другими словами, график гостированной АЧХ сродни сообщениям об ошибках, выдаваемых нынешней Windows: ложное сообщение или нет, полная дурь или случайная смесь правды и кривды, определить может только опытный специалист.

Сами производители акустических систем втихаря используют динамические характеристики (например, основанные на wavelet-преобразовании), чтобы разобраться и понять, что и как улучшать в своих колонках. Покупателям же показывают по старинке лишь характеристики стационарные, то бишь замороженные во времени. Причем зачастую очень грамотно облагороженные и причесанные, чтоб у людей, непосвященных в тайны конкретных колонок, лишних вопросов не возникало.

Что касается активных акустических систем, то в отличие от пассивных, задачка усложняется, так как к динамике (поведению во времени) колонок добавляется динамика встроенного усилителя. А у последнего, как и у любого неизмерительного усилителя, коэффициент нелинейных искажений разный на разных частотах и уровнях мощности.


Автор
Андрей Волов

Комментарии