Наука и технологии
21 апреля 2014, 07:00

Как смартфоны чувствуют мир. Часть 1: акселерометры, гироскопы и другие сенсоры

Сами того не подозревая, мы каждый день пользуемся акселерометрами, магнитометрами и микрофонами, которые имеются в наших мобильных устройствах. Но как же устроены эти миниатюрные датчики? Об этом читайте в нашем материале.

Что же такое МЭМС (MEMS)? Под этой аббревиатурой скрывается название «микроэлектромеханические системы» (Microelectromechanical systems). Они представляют собой миниатюрные устройства, содержащие микроэлектронные и микромеханические компоненты. Само название МЭМС, скажем прямо, совсем не на слуху у пользователей. Однако каждый день мы пользуемся множеством девайсов, основанных на базе этих решений. Самым простым примером микроэлектромеханической системы может служить акселерометр, который используется во всех современных смартфонах, игровых консолях и жестких дисках. Однако существует множество других систем, применение которых отнюдь не ограничивается потребительской электроникой. Решения на основе МЭМС находят применение в автомобильной промышленности, военной отрасли, а также медицине.

История и архитектура

Для начала немного истории. По большому счету, началом развития МЭМС можно считать 1954 год. Именно тогда был открыт пьезорезистивный эффект кремния и германия, который лег в основу первых датчиков давления и ускорения. Через 20 лет — в 1974 году — компанией National Semiconductor впервые было налажено массовое производство датчиков давления. А в 1990-х годах рынок микроэлектромеханических систем значительно вырос благодаря началу использования различных миниатюрных сенсоров в автомобильной электронике.

MEMS-системы получили приставку «микро-» из-за своих размеров. Составные части таких устройств имеют размеры от 1 до 100 мкм, а размеры готовых систем варьируются от 20 мкм до 1 мм.

MEMS-сенсор

Источник изображения

В плане архитектуры МЭМС-устройство состоит из нескольких взаимодействующих механических компонентов и микропроцессора, который обрабатывает данные, получаемые от этих компонентов. Какого-то стандарта для механических элементов нет: по своему типу они могут сильно различаться в зависимости от назначения конкретного устройства.

В качестве материалов для производства МЭМС могут использоваться как и традиционный кремний, так и другие материалы: например, полимеры, металлы и керамика. Чаще всего механические системы изготавливаются из кремния. Его основные преимущества заключаются в физических свойствах. Так, кремний очень надежен — он может работать в течение триллионов циклов операций и при этом не разрушаться. Что касается полимеров, то этот материал хорош тем, что его можно производить в больших количествах и, что самое важное, с множеством различных характеристик под конкретные задачи. Ну а металлы (золото, медь, алюминий), в свою очередь, обеспечивают высокие показатели надежности, хоть и уступают по качеству своих физических свойств кремнию.

Стоит отдельно упомянуть и о таких материалах, как нитриды кремния, алюминия и титана. Благодаря своим свойствам они широко используются в микроэлектромеханических системах с пьезоэлектрической архитектурой.

Что касается технологий производства МЭМС, то здесь используется несколько основных подходов. Это объемная микрообработка, поверхностная микрообработка, технология LIGA (Litographie, Galvanoformung и Abformung — литография, гальваностегия, формовка) и глубокое реактивное ионное травление. Объемная обработка считается самым бюджетным способом производства МЭМС. Ее суть заключается в том, что из кремниевой пластины путем химического травления удаляются ненужные участки материала, в результате чего на пластине остаются только необходимые механизмы.

Результат, полученный с помощью объемной обработки

Источник изображения

Глубокое реактивное ионное травление почти полностью повторяет процесс объемной микрообработки, за исключением того, что для создания механизмов используется плазменное травление вместо химического. Полной противоположностью этим двум процессам является процесс поверхностной микрообработки, при котором необходимые механизмы «выращиваются» на кремниевой пластине путем последовательного нанесения тонких пленок. И, наконец, технология LIGA использует методы рентгенолитографии и позволяет создавать механизмы, высота которых значительно превышает ширину.

В целом, все МЭМС можно разделить на две большие категории: сенсоры и актуаторы. Различаются они принципом своей работы. Если задача сенсора состоит в преобразовании физических воздействий в электрические сигналы, то актуатор выполняет прямо противоположную работу, переводя сигнал в какие-либо действия. Тот же акселерометр является сенсором, а в качестве примера устройства, использующего актуаторы, можно привести DLP-проектор (Digital Light Processing).

DLP-проектор BenQ использует актуаторы

Источник изображения

Ну а теперь мы поговорим о каждом устройстве в отдельности.

Акселерометры

Самым распространенным МЭМС-устройством является акселерометр. Как уже говорилось выше, сфера его использования чрезвычайно обширна. Она охватывает мобильные телефоны, ноутбуки, игровые приставки, а также более серьезные устройства, такие как автомобили. Само предназначение акселерометра заключается в измерении кажущегося ускорения. В случае с мобильными телефонами он используется для многих целей. Например, для смены ориентации экрана. Или же выполнения каких-либо функций при «встряхивании» устройства. Кроме этого, не стоит забывать и об играх — они, пожалуй, составляют основную сферу применения акселерометров. Нынче уже сложно представить «продвинутую» игрушку, в которой не было бы реализовано управление посредством наклона телефона. Одним словом, акселерометр стал неотъемлемой частью смартфонов. Кстати, впервые он был установлен в мобильный телефон Nokia 5500. Благодаря акселерометру телефон можно было использовать как шагомер. Любители утренних пробежек были в восторге! Но, конечно, только после выхода Apple iPhone акселерометры достигли пика популярности. Да и в целом интерес к MEMS начал расти вместе с развитием платформ iOS и Android.

Nokia 5500 — первый телефон с акселерометром

Акселерометры также имеются в различных контроллерах игровых консолей, будь то обыкновенный геймпад или несколько иное устройство, например, контроллер движения PlayStation Move. Кстати, акселерометр используется и в анонсированном на днях шлеме виртуальной реальности Sony Project Morpheus.

Особое значение имеет акселерометр, применяемый в ноутбуках, а точнее, в их жестких дисках. Всем известно, что винчестеры — устройства довольно хрупкие, и в случае с лэптопами вероятность их повреждения возрастает в разы. Так, при падении ноутбука акселерометр фиксирует резкое изменение ускорения и отдает команду на парковку головки жесткого диска, предотвращая и повреждение устройства, и потерю данных.

Акселерометр InvenSense MPU-6500

Источник изображения

По схожему принципу акселерометр влияет на работу автомобильного видеорегистратора. При резком ускорении, торможении и перестроении транспортного средства видеозапись помечается специальным маркером, который защищает ее от стирания и перезаписи, что значительно облегчает дальнейшие разборы дорожно-транспортных происшествий.

В целом самым большим и перспективным рынком для акселерометров и других МЭМС является автомобильная промышленность. Дело в том, что в отличие от рынка мобильных и игровых устройств, где акселерометры используются в развлекательных целях, в автомобилях на работе акселерометра основываются буквально все системы безопасности. С их помощью работают система развертывания подушек безопасности, антиблокировочная система тормозов, система стабилизации, адаптивный круиз-контроль, адаптивная подвеска, система Traction Control — и это далеко не полный список! Учитывая, что производители автомобилей уделяют особое внимание безопасности, количество применяемых акселерометров и других МЭМС будет лишь расти.

Краш-тест автомобиля Opel Vectra. В 90-е годы подушки безопасности зачастую были только опцией

Источник изображения

Но несмотря на то, что рамки использования акселерометра довольно четко определены, разработчики продолжают думать над тем, в каких еще целях можно применять это устройство. Например, ученые из Национального института геофизики и вулканологии Италии Антонио Д’Аллесандро (Antonino D'Alessandro) и Джузеппе Д’Анна (Giuseppe D'Anna) предложили использовать акселерометр мобильного телефона как датчик землетрясений. Очень интересно! Исследования проводились с акселерометром iPhone, и результаты сравнивались с показаниями полноценного датчика землетрясений компании Kinemetrics. Как оказалось, мобильный гаджет способен улавливать сильные землетрясения силой более 5 баллов по шкале Рихтера, но только если он находится вблизи эпицентра подземных толчков. Результаты не настолько впечатляют, однако ученые уверены: чувствительность акселерометров будет только расти, и в будущем они смогут определять и менее сильные землетрясения. Остается лишь вопрос: зачем акселерометру телефона измерять силу подземных толчков, когда есть датчики землетрясения? Все дело в том, что ученые ставят своей целью создание в будущем целой сети из смартфонов в сейсмически активных районах. В теории, при землетрясениях данные со смартфонов будут поступать в аналитический центр, что позволит определять наиболее пострадавшие от стихии районы и правильно координировать спасательные операции. Идея более чем интересная и, главное, действительно востребованная в некоторых уголках мира, однако сейчас сложно представить, как она будет реализована на практике.

Теперь поговорим о самой конструкции акселерометра. Существует несколько видов устройств в зависимости от их архитектуры. Работа акселерометра может основываться на конденсаторном принципе. Подвижная часть такой системы представляет собой обыкновенный грузик, который смещается в зависимости от наклона устройства. По мере его смещения изменяется емкость конденсатора, а именно меняется напряжение. Исходя из этих данных, можно получить смещение грузика, а вместе с тем и искомое ускорение.

Акселерометр, основанный на конденсаторном принципе. На фото изображены обкладки конденсатора (capacitor plates), неподвижная часть (proof mass), пружина (spring)

Самым распространенным типом акселерометров являются пьезоэлектрические системы. Так же как и в конденсаторных акселерометрах, в их основе лежит грузик, который давлением воздействует на пьезокристалл. Под давлением он вырабатывает электрический ток, что позволяет рассчитать искомое ускорение, зная параметры всей системы.

Существует и еще один тип акселерометров, который в корне отличается от конденсаторного и пьезоэлектрического. Такие акселерометры называются термальными. Их архитектура предусматривает использование пузырька воздуха. При ускорении пузырек отклоняется от своего начального положения, и это фиксируется датчиками. Зная, на сколько сместился пузырек при движении, можно рассчитать величину ускорения.

Гироскопы

Еще одним интересным датчиком, часто используемым вместе с акселерометром, является гироскоп. Его основное предназначение заключается в измерении угловых скоростей относительно одной или нескольких осей. Собственно, комбинация акселерометра и гироскопа позволяет отследить и зафиксировать движение в трехмерном пространстве.

Первым из мобильных устройств, обладающих гироскопом, стал Apple iPhone 4, после чего наличие этой МЭМС стало чуть ли не обязательным требованиям для любого смартфона. Функциональность гироскопа пользователи смогли оценивать во многих мобильных играх, где вместо одного из двух виртуальных джойстиков появилась кнопка выстрела. Ну а целиться уже приходилось путем позиционирования смартфона в пространстве, что стало возможно как раз благодаря наличию гироскопа.

Гироскоп, используемый в Apple iPhone 4

Источник изображения

Кроме мобильных устройств, гироскопы присутствуют в контроллерах для игровых приставок PlayStation, Xbox и Wii, где они функционируют вместе с акселерометрами. Также эти системы используются в камерах в целях оптической стабилизации для получения качественных снимков.

Архитектура гироскопов во многом схожа с таковой у акселерометров. Многие из этих устройств имеют конденсаторную структуру. Такой дизайн, например, использует в своих продуктах компания STMicroelectronics. В основе их гироскопа лежит механический элемент, работающий по принципу камертона и использующий эффект Кориолиса для преобразования угловой скорости в перемещение чувствительной структуры. Немного поясним этот процесс.

Две подвижные массы находятся в постоянном движении, причем в противоположных направлениях, которые обозначены на рисунке синим цветом. При изменении угловой скорости начинает действовать сила Кориолиса, обозначенная желтым цветом. При этом направление силы Кориолиса перпендикулярно направлению движения масс. Сила Кориолиса вызывает смещение масс, пропорциональное величине угловой скорости. Поскольку система имеет конденсаторную структуру, то любое смещение вызывает изменение электрической емкости. И таким образом угловая скорость преобразуется в электрический параметр. Тут же стоит отметить, что благодаря использованию специальных камертонов гироскопы STMicroelectronics нечувствительны к случайной вибрации. При таком нежелательном воздействии на подвижные массы они обе будут смещаться в одном направлении, тем самым не изменяя емкости конденсатора.

Так выглядит чип гироскопа производства STMicroelectronics

Магнитометры и барометры

Еще одной интересной микроэлектромеханической системой является магнитометр. Он, как и обычный магнитный компас, отслеживает ориентацию устройства в пространстве относительно магнитных полюсов Земли. Полученная же информация используется в основном в картографических и навигационных приложениях.

В дополнение к магнитометру часто используется МЭМС-барометр. Впервые барометр появился в устройстве Samsung Galaxy Nexus, вышедшем в 2011 году. Опять же, его функциональность ничем не отличается от традиционного — он измеряет атмосферное давление в текущем местоположении устройства. При этом барометр уменьшает время подключения к системе GPS. Сама же суть работы сенсора заключается в сравнении внешнего атмосферного давления по отношению к вакуумной камере внутри самого датчика. Это позволяет определять местоположение пользователя с точностью до 50 см по высоте и значительно расширяет возможности навигации пользователя, поскольку также позволяет определить местоположение по вертикали. К примеру, мобильный телефон с барометром поможет определить ваш маршрут на любом этаже торгового центра, с чем не справляется система GPS, указывая лишь местоположение на плоскости.

Samsung Galaxy Nexus — первый смартфон с барометром

Источник изображения

Однако для ориентирования внутри зданий необходимо специальное программное обеспечение. Разработкой такого ПО занимается финская компания IndoorAtlas. Главная идея ориентирования внутри зданий заключается в том, что любое помещение имеет свой уникальный геомагнитный рисунок благодаря различиям в интерьере и архитектурных формах. Стоит отметить, что ни металлические конструкции внутри помещений, ни электропроводка не мешают правильной работе программы. Одноименное приложение IndoorAtlas на основе геомагнитной составляющей генерирует карту помещения и запоминает ее для дальнейшего использования. Само собой, для полноценного функционирования сервиса необходимо предварительно сгенерировать множество карт. Эта задача лежит на плечах самих пользователей, и на ее решение, безусловно, уйдет немало времени. По словам разработчиков, на составление геомагнитной карты магазина может уйти до двух часов! Прямо скажем, далеко не каждый захочет потратить столько времени даже в таких полезных целях. Помимо этого, вызывала вопросы точность позиционирования, однако инженеры IndoorAtlas утверждают: «вы сможете определить свое местоположение с точностью до 2 метров». Неплохо.

Так выглядит карта помещения в приложении IndoorAtlas

Источник изображения

IndoorAtlas далеко не единственная компания, которая работает в этом направлении. Разработкой сервисов для ориентирования в помещениях также занимаются такие крупные компании, как Google, Samsung и Qualcomm.

Микрофоны

Впервые МЭМС-микрофоны были использованы в телефонах Motorola в 2003 году. И прошло немало времени, прежде, чем микрофоны с такой архитектурой начали вытеснять традиционные электретные устройства. В сравнении с предшественниками МЭМС-микрофоны обеспечивают более четкую и качественную передачу звука. И опять же, первой компанией, сделавшей ставку на МЭМС-микрофоны, стала Apple, которая начала их использовать в своих продуктах iPhone 4 и iPad 2. Интересно, что в iPhone используется не один, а два микрофона — в целях снижения уровня посторонних шумов, что особенно важно для работы систем распознавания голоса. Примеру Apple последовали и другие компании, в том числе Samsung и LG, которые внедрили МЭМС-микрофоны в свои устройства Galaxy Tab 10.1 и G-Slate. Сейчас микрофоны такого типа становятся определенным стандартом.

Миниатюрный MEMS-микрофон производства Akustica

Источник изображения

Что касается архитектуры МЭМС-микрофонов, то во многом она схожа с дизайном акселерометров и гироскопов. Как и эти устройства, работа микрофона может основываться на конденсаторном принципе. В основе датчика лежат две обкладки: подвижная, называемая мембраной, и неподвижная. Когда человек говорит, на мембрану микрофона оказывается давление воздухом и она смещается. При смещении мембраны изменяется напряжение в системе, что влечет изменение емкости конденсатора. Далее происходит пересчет полученных данных в численные параметры звуковой волны. Стоит отметить, что мембрана представляет собой решетчатую поверхность. Перфорация выполняется для того, чтобы уменьшить вероятность возникновения помех.

Также МЭМС-микрофоны могут иметь пьезоэлектрическую архитектуру. В этом случае вместо неподвижной обкладки используется пьезокристалл, на который воздействует подвижная мембрана. Под давлением мембраны пьезокристалл вырабатывает электрический ток, который затем преобразуется в параметры звуковой волны.

Вместо заключения

В этот раз мы рассмотрели самые распространенные МЭМС-устройства, которые используются в большинстве современных смартфонов. Но, как мы уже говорили, применение микроэлектромеханических систем отнюдь не ограничивается сферой потребительской электроники! В следующей части нашего материала мы остановимся на МЭМС-актуаторах и уделим внимание инновационным разработкам. Следите за обновлениями!